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Summary. In cross-sectional studies of infectious diseases, the data typically consist of: age at the time
of study, status (presence or absence) of infection, and a chronology of events possibly associated with the
disease. Motivated by a study of how human herpesvirus 8 (HHV-8) is transmitted among children with
sickle cell anemia in Uganda, we have developed a flexible parametric approach for combining current-status
data with a history of blood transfusions. We model heterogeneity in transfusion-associated risk by a child-
specific random effect. We present an extension of the model to accommodate the fact that there is no gold
standard for HHV-8 infection and infection status was assessed by a serological assay. The parameters are
estimated via maximum likelihood. Finally, we present results from applying various parameterizations of
the model to the Ugandan study.
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1. Introduction
In studies of infectious diseases, epidemiologists frequently
wish to estimate and compare the incidence rate between
different age groups. Often prospective information is not
available, and inference must be based on cross-sectional data
consisting of the age and disease status at the time of exami-
nation. The time to onset of disease is left-censored for indi-
viduals with the disease and right-censored for those without.
There is a vast literature on current-status analysis that ad-
dresses related issues, much of it motivated by estimating the
distribution of the age at HIV infection, time from infection
to onset of clinical AIDS, and the per contact probability of
virus transmission or infectivity (Shiboski and Jewell, 1992).
Approaches to covariate analysis of current-status data were
described, e.g., by Rossini and Tsiatis (1996). A general count-
ing process framework for infectious diseases that includes the
current-status data setting as a special case was presented by
Rhodes, Halloran, and Longini (1996).

This article is motivated by a cross-sectional study of
blood-borne transmission of human herpesvirus 8 (HHV-8,
also called Kaposi’s sarcoma-associated herpesvirus) in 600
Ugandan children afflicted with sickle cell anemia. HHV-8
is the infectious cause of Kaposi’s sarcoma, and among chil-
dren is transmitted through person to person contact, perhaps
through saliva. It is uncertain whether blood-borne transmis-
sion also occurs, although HHV-8 DNA has been detected at
very low levels in peripheral blood. Our primary interest was
in capturing the age-specific risk of HHV-8 infection associ-
ated with receiving blood transfusions. In children enrolled in
our cross-sectional study information on the number of blood
transfusions and the ages of transfusions was collected from

the mothers using questionnaires. HHV-8 infection status at
enrollment was assessed using an assay that measures anti-
bodies against K8.1, an HHV-8 structural glycoprotein. The
definition of “infected” was based on predefined cut-off points
for the continuous assay optical density readings. Further de-
tails about the study and HHV-8 epidemiology can be found
in Mbulaiteye et al. (2003a).

By collapsing the transfusion data for each child to con-
sist of the total number of prior transfusions, we could po-
tentially apply existing methods for current-status data (Sun
and Kalbfleisch, 1993; Rossini and Tsiatis, 1996), as they do
not use information about the times of past events. However,
when reliable data are available on the ages of transfusion,
efficiency may be gained by incorporating these data into the
analysis.

In Section 2 we present a simple parametric model for the
distribution of HHV-8 infection, that combines current-status
and age-at-transfusion data. This is done by modeling the risk
of infection by two components: a discrete component associ-
ated with the risk of infection from a blood transfusion at a
given age of transfusion, and a continuous component corre-
sponding to infection from other sources, which we refer to as
“background infections.” This model allows us to estimate the
per-transfusion risk of infection, as well as the overall proba-
bility of infection in this study. Our model captures individual
variation in transfusion risk by including a child-specific ran-
dom effect in the per-transfusion risk component. This model
thus complements existing approaches that would incorporate
the number of transfusions as covariate information.

We extend the basic model in Section 3 to accommodate
the fact that infection with HHV-8 was assessed using an
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antibody assay with imperfect sensitivity and specificity. We
use a mixture model for the continuous assay readings that
treats the true infection status as a latent variable and thus
avoid having to rely on external cut-off values for the classifi-
cation of “infected.” Under this model, the mixing probabil-
ity, i.e., the probability of true infection in this population,
is again composed of two components, namely a transfusion-
associated risk component and a “background infection” risk
component.

Section 4 provides an application of the model and its ex-
tension to data from the Ugandan study, and in Section 5 we
discuss our results.

2. The Model and Likelihood
2.1 Model for Progression of Infection
Let Ia denote the infection status of a child at his or her
current age a, with Ia = 1 if the child is infected and 0 oth-
erwise. In what follows we treat age as a continuous variable.
The process of infection is characterized by a progressive two-
state model with states 0, uninfected, and 1, infected. For a
general overview of Markov and multistate models in epidemi-
ology see Commenges (1999). We assume for now that the
infection status I of a child is known exactly, an assumption
that we relax in the next section to account for the fact that
infection status is determined using a serological assay.

The number of transfused units of blood that the child
received during his/her lifetime is denoted by n, and t =
(t1, . . . , tn), t1 ≤ t2 ≤ · · · ≤ tn are the ages at which the trans-
fusions were received. When more than one unit of blood is
transfused on the same day, for example the jth and (j − 1)th
unit, then tj = tj+1. The observed data consist of the vectors
(Ia , n, t), if n > 0, and (Ia , n = 0), otherwise. Complete
information on the progression of infection would entail in-
formation on the (in our study unobserved) status of infec-
tion It+δ immediately after each transfusion was received, i.e.,
(Ia, n, t, It1+δ, . . . , Itn+δ) = (Ia, n, t, It+δ), where δ denotes a
short latency period to detectable infection, thought to be a
few weeks for HHV-8. HHV-8 infection, as detected by anti-
bodies, does not clear and thus I = 1 is an absorbing state,
P (Itk+δ = 1 | Itk−1+δ = 1) = 1 and P (Itk+δ = 0 | Itk−1+δ = 1) =
0. We will comment on this assumption in later sections.

The assumption of an absorbing state in a two-state setting
leads to a one-stage Markov model for the progression of in-
fection, that is, the infection status of the person immediately
after receiving a transfusion depends only on the infection sta-
tus following the previous transfusion and the time interval
between transfusions, and therefore

P (Ia, Itn+δ, . . . , It1+δ)

= P (Ia | Itn+δ)P (Itn+δ | Itn−1+δ) · · ·P (It1+δ | I0)P (I0). (1)

Let the random variable T denote the time to transition
from I = 0 to I = 1, or, equivalently, the age at infection.
Infection can occur via blood transfusion, at known ages t1 ≤
t2 · · · ≤ tn , or from other, perhaps unspecified, causes that we
refer to as “background infection.” In the absence of informa-
tion of times or sources of exposure, we postulate a continuous
hazard function λ(s) for the process of background infection.
In the untransfused population, time to infection is governed

only by the background rate and thus the hazard function for
the background infection at age s > 0 can be defined as

λ(s) = lim
ε→0+

P [s ≤ T < s + ε |T ≥ s, n = 0]

ε
.

Covariates X(s) could be incorporated, e.g., by specify-
ing a Cox proportional hazards model of the form λ(s) =
λ0(s) exp(X(s)′ β). For an untransfused child, we get

P (Ia = 1 |n = 0) = 1 − P (T > a)

= 1 − P (T > a | I0 = 0)P (I0 = 0)

= 1 − P (I0 = 0) exp

(
−

∫ a

0

λ(s) ds

)
.

While there is conflicting evidence of vertical transmission of
HHV-8, in any event the probability of infection at birth is
very small (Mantina et al., 2001; Mbulaiteye et al., 2003b).
Also, our study does not provide data on infants. Therefore,
we assume that P (I0 = 0) = 1.

In the transfused population we have to account for the pos-
sibility of infection at the ages of transfusions, t, and specify
the hazard function of infection over the infinitesimal interval
[s, s + ds) by

P [s ≤ T < s + ds |T ≥ s] =

{
λ(s) ds + θ(s), s = ti

λ(s) ds, otherwise,

where the mass points θ(ti ) correspond to the additional risk
of infection associated with a unit blood transfused at age
ti , and again, λ(s) is the hazard associated with background
infections (for details on hazards with discrete as well as con-
tinuous components see for example Kalbfleisch and Prentice
[1980], p. 8). As λ(s)ds 	 θ(s), for s = ti for any i, the above
hazard model reduces to

P [s ≤ T < s + ds |T ≥ s] =

{
θ(s), s = ti

λ(s) ds, otherwise.

Tied transfusion times are accommodated for by letting
θ(ti ) = θ(tj ) for ti = tj . Notice that θ models the probabil-
ity of infection through any blood transfusion, which depends
on the (unknown) prevalence of HHV-8 among blood donors,
and not the probability of virus transmission conditional on
having received a contaminated transfusion.

We assumed in this setup that the background infection
rate is the same in transfused and untransfused children. This
is reasonable, as transfusions are related to the severity of
anemia, which to our knowledge is not related to risk of viral
infection.

If a child who received transfusions is uninfected at the cur-
rent age a, then there was no infection at any age throughout
the interval [0, a], and the overall survivor function is

P (Ia = 0 |n, t) = P (Ia = 0, Itn+δ = 0, . . . , It1+δ = 0)

= P (T > a)

=

n∏
j=1

(1 − θ(tj)) exp

(
−

∫ a

0

λ(s) ds

)
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and

P (Ia = 1 |n, t) = 1 − P (Ia = 0 |n, t) = 1

−
n∏

j=1

(1 − θ(tj)) exp

(
−

∫ a

0

λ(s) ds

)
, (2)

which corresponds to marginalizing over the unobserved in-
termediate infection states, i.e., all the possible ways that in-
fection might have occurred over time.

2.2 Parameterization of θ(t)
The risk of infection per unit blood transfused may vary for
different children, i.e., there may be differences in host re-
sponse to infection due to unobserved factors that influence
the immune system such as other infections, e.g., malaria or
parasites and malnourishment. To allow for heterogeneity of
infection risk among children that is not captured by covari-
ates in the background rate or otherwise in the parametric
model, we assume

θ(t |Y ) = γ(t)Y,

where Y denotes a child-specific random effect from a distri-
bution with support on (0, 1), and γ(·), satisfying 0 ≤ γ(s) ≤
1, is a known function of age at transfusion, that may depend
on additional parameters. Unconditionally, the mean risk of
infection through transfusion is

θ(t) =

∫
θ(t | y) dF (y) = γ(t)E(Y ).

The probability of being infected for a transfused child is
obtained by integrating over the random effect

P (Ia = 1 |n, t) = 1 − exp

(
−

∫ a

0

λ(s) ds

)

×
∫ n∏

j=1

(1 − θ(tj | y)) dF (y). (3)

A flexible choice of distribution for Y on (0, 1) is the beta
distribution, denoted by B(α, β), for which the integral in
(3) can be written explicitly as follows

∫ n∏
j=1

(1 − γ(tj)y) dF (y)

=
Γ(n + α)Γ(α + β)

Γ(α)Γ(n + α + β)
(−1)n

n∏
j=1

γ(tj)

+
Γ(n− 1 + α)Γ(α + β)

Γ(α)Γ(n− 1 + α + β)
(−1)n−1

×
n∑

k=1

n∏
j �=k

γ(tj) + · · · − α

α + β

n∑
k=1

γ(tk) + 1.

If there is no information on the ages at transfusion,
but only on the total number of transfusions, n, we as-
sume θ(t |Y ) = θY , that is the discrete hazard associated

with one unit of transfused blood given the random ef-
fect is constant for all ages. The constant θ represent the
mean of θ(t) averaged over all possible transfusion ages t, as
Et1,...,tnEY

∏n

j=1(1 − θ(tj , y)) = EY

∏n

j=1(1 −Etjθ(tj , y)). In
this setting the probability of being uninfected for a trans-
fused individual simplifies to

P (Ia = 0 |n) = P (T > a |n)

=

∫
(1 − θy)n dF (y) exp

(
−

∫ a

0

λ(s) ds

)
(4)

and P (Ia = 1 |n) = 1 −
∫

(1 − θy)n dF (y) exp(−
∫ a

0 λ(s) ds),

with
∫

(1 − θy)n dF (y) =
∑n

k=1(−θ)kn!Γ(k + α)Γ(α + β)/
[k!(n− k)!Γ(α)Γ(k + α + β)].

Note that from (4), for θ(t |Y ) = θ small,

P (Ia = 0 |n) = exp

(
−

∫ a

0

λ(s) ds + n log(1 − θ)

)

≈ exp

(
−

∫ a

0

λ(s) ds− θn

)
.

The small, constant transfusion risk θ is thus close to the
relative risk estimate based on a log-linear model that treats
the number of transfusions as a continuous variable.

Before we present the likelihood for our model, we point out
that, if the transfusion risk is modeled using a random effect,
the Markov property for I only holds conditionally given Y,
with the conditional transition probabilities

P (Itk+δ = 0 | Itk−1+δ = 0, Y )

= P (T > tk + δ |T > tk−1 + δ, Y )

=

exp

(
−

∫ tk+δ

0

λ(s) ds)

k∏
j=1

(1 − θ(tj |Y )

)

exp

(
−

∫ tk−1+δ

0

λ(s) ds)

k−1∏
j=1

(1 − θ(tj |Y )

)

=

exp

(
−

∫ tk+δ

0

λ(s) ds)

k∏
j=1

(1 − Y γ(tj)

)

exp

(
−

∫ tk−1+δ

0

λ(s) ds)

k−1∏
j=1

(1 − Y γ(tj)

)

= (1 − Y γ(tk)) exp

(
−

∫ tk+δ

tk−1+δ

λ(s) ds

)
.

2.3 The Likelihood
We use the subscript i to denote the data (Iai

, ni, ti) or
(Iai

, ni = 0) for the ith child in the sample. The number of un-
transfused children in the sample is N 0 and N 1 is the number
of transfused children. If the infection status Iai

is known for
each child in the study, the log-likelihood for the data based
on our model is
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l1(θ, λ) = logL(I,θ, λ)

=

N0∑
i=1

{
Iai

log

(
1 − exp

(
−

∫ ai

0

λ(s) ds

))

− (1 − Iai
)

∫ ai

0

λ(s) ds

}

+

N1∑
j=1

{
Iaj

log

(
1 − exp

(
−

∫ aj

0

λ(s) ds

)

×
∫ n∏

j=1

(1 − θ(tj | y))dF (y)

)

− (1 − Iaj
) log

(∫ n∏
j=1

(1− θ(tj | y))dF (y)

)

− (1 − Iaj
)

∫ aj

0

λ(s) ds

}
. (5)

If there is no information on the ages at transfusion, but
only on the total number of transfusions, the data are (Iai

, ni),
and under the assumption that θ is constant over age, the
corresponding log likelihood is

l2(θ, λ) =

N0∑
i=1

{
Iai

log

(
1 − exp

(
−

∫ ai

0

λ(s) ds

))

− (1 − Iai
)

∫ ai

0

λ(s) ds

}

+

N1∑
j=1

{
Iaj

log

(
1 − exp

(
−

∫ aj

0

λ(s) ds

)

×
∫

(1 − θy)njdF (y)

)

− (1 − Iaj
) log

(∫
(1 − θy)njdF (y)

)

− (1 − Iaj
)

∫ aj

0

λ(s) ds

}
. (6)

If the sample contains a mixture of subjects with com-
plete and incomplete information on transfusion times, they
can be combined in the likelihood by replacing

∏
n
j=1 (1 −

θ(tj | y)) dF (y) for the children with missing transfusion times
in the likelihood (5) by its expectation

Et

n∏
j=1

(1 − θ(tj | y)) dF (y).

If enough data are available, the above expectation can be
estimated using the empirical distribution function of t. If
the information on t is sparse, introducing a new parameter,
θ = Etθ(t) (in a slight abuse of notation), allows one to di-
rectly combine the likelihoods (5) and (6) for children with
complete and incomplete transfusion history.

3. A Mixture Model for the Assay Measurements
The true infection status Ia for HHV-8 at age a cannot be ob-
served, as there is no gold standard measure of HHV-8 infec-
tion. In our study HHV-8 infection was assessed using an en-
zyme immunoassay that measures antibodies against K8.1, an
HHV-8 structural glycoprotein. The definition of “infected”
was based on previous experimental results and a review of
the observed distribution of the assay optical density readings,
a common approach in epidemiologic studies. Subjects were
classified as seronegative (optical density ≤ 0.90), indetermi-
nate (optical density in the range 0.91–1.20), or seropositive
(optical density > 1.20), and indeterminate subjects were ex-
cluded from the analysis (for details see Mbulaiteye et al.,
2003a).

To avoid the somewhat arbitrary definition of cut-off
points, to be able to use the “indeterminate” children, and to
fully account for the continuous nature of the optical density
readings, we model the measurements using a latent class or
mixture model that we characterize as follows. Let X denote
the optical density measurement for a subject in the study.
The observed data for each child thus are (Xa , n, t) or (Xa ,
n = 0). At age a, each child is in one of two latent or un-
observed true infection states, Ia = 1 (infected) and Ia =
0 (uninfected) with p = P (Ia = 1). The probability density
function of X or a transformation of it is modeled as

g(x) = f0(x)(1 − p) + f1(x)p,

where f 0 corresponds to the optical density measurements of
the uninfected, and f 1 of the infected subpopulation, and the
mixing probability p corresponds to the probability of infec-
tion in this population. A similar approach for continuous as-
say measurements was used by Thompson, Smith, and Boyle
(1998) to model blood glucose levels, and Pfeiffer, Gail, and
Brown (2000) to assess factors that influence infection with
Helicobacter pylori.

By modeling the state probabilities using p =
P (Ia = 1 |n, t) or p = P (Ia = 1 |n = 0), from equa-
tion (2), we can combine the mixture model for the assay
measurements with the model for the progression of infection.
After a log transform of the data we chose fi to be normal
with mean µi and standard deviation σi, for i = 0, 1. Given
a and the transfusion information n, t, we thus fitted

g(y | a, n, t) = f(y;µ0, σ0) · (1 − p(a, n, t;θ, λ))

+ f(y;µ1, σ1) · p(a, n, t;θ, λ), (7)

where y = log(x + 0.5). We assumed that covariates such
as age or transfusion history only influence the probability of
infection, but not the fi s. In other applications one could allow
the parameters of the distributions to depend on covariates
as well.

The likelihood for the mixture model is

l3(θ, λ,µ,σ) = logL(Y,θ, λ,µ,σ) =

N∑
i=1

log g(yi | ai). (8)

We used the EM algorithm to find maximum likelihood esti-
mates for the model parameters (θ, λ, µ, σ) (Titterington,
Smith, and Makov, 1985; McLachlan and Basford, 1988). To
find confidence intervals for all model estimates we used the
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variances from the estimated Fisher information matrix and
asymptotic normal theory.

4. Application to the Ugandan HHV-8 Study
4.1 The Data
We applied different parameterizations of the model that as-
sumes the infection state to be known (likelihoods [5], [6], and
the mixture model [8]) to data that were collected to study the
association between HHV-8 infection and transfusion history
in Ugandan children with sickle cell anemia. The study in-
cludes 600 children attending the Sickle Cell Clinic at Mulago
Hospital, Kampala, from November 2001 to April 2002. One
child without age information was excluded from the data
set. The age range for the remaining 599 children was 1–16
years, as the study was designed to exclude infants, with only
one child younger than 1 year. The original design entailed en-
rolling approximately equal proportions of transfused children
and children who had never been transfused. In the final en-
rollment, never-transfused children comprised 43% (256/599)
of the study sample. Interviewers elicited transfusion history
from each child’s mother and obtained a blood sample that
was tested for HHV-8 antibodies using the K8.1 enzyme im-
munoassay. For roughly half of the transfused children, the
mother’s recall of transfusion history was validated by review-
ing hospital charts. The mothers’ reports were highly accu-
rate. Based on preliminary analysis, none of the demographic
variables collected in the study were associated with HHV-
8 infection status and thus were not included in the models
presented in this section (for details see Mbulaiteye et al.,
2003a).

4.2 Analysis with Infection Status Assumed to be Known
To define “infected” we applied the cut-off points used
by Mbulaiteye et al. (2003a), with optical density ≤ 0.90
corresponding to “uninfected,” optical density > 1.20 to
“infected,” and optical density reading in the range 0.90–1.20
to “indeterminate” subjects. The 39 “indeterminate” children

Table 1
Estimates for various parameterizations of the models for known infection status

Parameter MLE (95% CI) Log likelihood

Model Ia λ 0.028 (0.021, 0.034) −262.880
θ 0.027 (0.004, 0.050)

Model Ib λ 0.027 (0.022, 0.032) −262.831
α 1.040 (0.140, 1.940)
β 34.997 (33.037, 36.957)
θ = α/(α + β) 0.029 (0.005, 0.053)

Model IIa λ 0.025 (−0.006, 0.057) −260.222
θ1, ages [0,5) 0.018 (−0.019, 0.055)
θ2, ages [5,10) 0.075 (0.015, 0.081)
θ3, ages [10,17) 0.000 (−0.126, 0.126)

Model IIb λ 0.025 (0.012, 0.038) −259.847
γ1, ages [0,5) 0.175 (−1.137, 1.487)
γ2, ages [5,10) 0.990 (−3.884, 5.864)
γ3, ages [10,17) 0.000 (−2.234, 2.234)
α 0.625 (−1.5778, 2.8268)
β 5.295 (−41.9190, 52.5087)
θ1 = γ1α/(α + β) 0.019 (−0.104, 0.141)
θ2 = γ2α/(α + β) 0.104 (−0.418, 0.627)
θ3 = γ3α/(α + β) 0.000 (−0.236, 0.236)

as well as 16 children who had missing ages of transfusion were
excluded from all analyses in this section, resulting in a data
set consisting of 544 children. The number of transfusions,
infection status, and ages of the 55 excluded children did not
seem different from the rest of the study population.

Table 2 summarizes the results for various parameteriza-
tions of the likelihoods (5) and (6).

For Model Ia we fitted the likelihood (6) with a constant
background hazard, λ(s) = λ, and a constant transfusion risk
θ. Model Ib included the child-specific random effect from a
beta distribution with parameters α and β and set γ(s) = 1.
An estimate of the transfusion-specific risk was θ̂ = α̂/(α̂ + β̂)
with the 95% CI obtained by applying the delta method. The
point estimates for λ and θ and the 95% CIs for both mod-
els are very close, with λ̂ = 0.028 and θ̂ = 0.027(0.004, 0.050)
for Model Ia, and λ̂ = 0.027 and θ̂ = 0.029(0.005, 0.053) for
Model Ib. For both models the transfusion-associated risk was
statistically significant. The variance of the beta-distributed
random effect was estimated to be 0, indicating little evidence
of heterogeneity in transfusion risk among children. This was
confirmed by comparing the models using a likelihood ratio
test, that resulted in the value 0.12 of the test statistic on one
degree of freedom.

Note that in the results presented in Table 1 the age scale
for the background infection rate is years, while the time scale
for the transfusion risk component is “per transfusion,” where
the transfusion occurs over a very short time interval, typi-
cally a few hours. To make the two estimates comparable with
each other one would have to divide λ by 365, which would
confirm the assumption that λ 	 θ.

Model IIa assumed λ(s) = λ, and let the infection risk as-
sociated with transfusion vary by age t of transfusion, that
is θ(t) = θ1 if t < 5, θ(t) = θ2 if 5 ≤ t < 10, and θ(t) = θ3

if t ≥ 10. Model IIb included a child-specific random effect
from a beta distribution, and let γ(t) = γ1 if t < 5, γ(t) = γ2

if 5 ≤ t < 10, and γ(t) = γ3 if t ≥ 10. Models IIa and IIb
yielded very similar estimates for all parameters, and revealed
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Table 2
Estimates for the mixture model with various parameterizations of the mixing probabilities

Parameter MLE (95% CI) Log likelihood

Model I λ 0.028 (0.018, 0.037) −340.307
θ 0.027 (0.004, 0.050)
µ0 −0.342 (−0.364, −0.319)
σ0 0.099 (0.086, 0.113)
µ1 0.174 (0.157, 0.192)
σ1 0.490 (0.437, 0.544)

Model II λ 0.026 (0.017, 0.035) −333.970
θ1, ages [0,5) 0.019 (−0.002, 0.039)
θ2, ages [5,10) 0.078 (0.007, 0.149)
θ3, ages [10,17) 0.000 (−0.439, 0.439)
µ0 −0.348 (−0.366, −0.329)
σ0 0.095 (0.083, 0.107)
µ1 0.164 (0.104, 0.223)
σ1 0.490 (0.450, 0.530)

heterogeneity in the estimates of θ(t) for different ages of
transfusion. Children who were transfused at 0–5 years of age
had a risk of infection of about 0.02, children who were trans-
fused at 5−10 years of age had the highest risk (0.075 for
Model IIa, and 0.104 for Model IIb), and both models esti-
mated the risk of infection through transfusion to be zero in
the oldest age category. Again, the random-effects model did
not fit the data better than the fixed-effects model, based on
a likelihood ratio test.

Comparing Model Ia and Model IIa and Models Ib and IIb
resulted in the values of 5.32 and 5.97, respectively, on two
degrees of freedom for the likelihood ratio test statistic, both
significant at the 0.1 level. Letting the transfusion risk vary
by age of transfusion thus significantly improved the fit of the
models indicating that age is a predictor of risk of infection
through transfusion.

Other models without a random effect that let λ(s) vary
by age did not fit better than models with a constant base-
line risk of infection (results not shown). All models esti-
mated λ in the range 2.5–2.8% per year of age, which cor-
responds to a probability of roughly 0.36 of being infected by
age 16 in the untransfused population, in agreement with the
prevalences found in other similar populations (Gessain et al.,
1999).

To check whether the assumption of the same background
rate in transfused and untransfused children is reasonable, we
fit Model Ia separately to children without and with transfu-
sions. The estimates of λ were λ̂ = 0.028(0.019, 0.360) for the
untransfused children, and λ̂ = 0.023(−0.079, 0.125) for the
children with at least one transfusion, which justifies using a
common parameter for the combined data.

4.3 Analysis Using the Mixture Model
As the models incorporating a child-specific effect did not
improve the fit of the models, we fitted the mixture models
only with fixed transfusion risks. We based the analysis on
583 children, including the 39 children previously classified as
“indeterminate,” and fit the models to a log(x + 0.5) trans-
form of the optical density readings. While the mixture model
with constant transfusion risk could accommodate the 16 chil-
dren with missing ages of transfusion, we excluded them to
make the analyses comparable.

Several different starting points were used for the EM algo-
rithm, and the algorithm converged for all parameterizations
studied in this section.

Table 5 summarizes the results for various parameteriza-
tions. For Model I the mixing probability p followed (4), with
constant λ and θ. The estimates of λ̂ = 0.028 and θ̂ = 0.027
are very close to the model estimates using known infection
status, but the confidence intervals are slightly wider. The pa-
rameters of the normal mixtures were µ̂0 = −0.342, σ̂0 = 0.099
for the mixture density corresponding to the uninfected chil-
dren, and µ̂1 = 0.174 and σ̂1 = 0.490 for the density compo-
nent corresponding to the infected children. The value of the
log likelihood was −340.307.

For Model II the parameterization of the mixing probabil-
ity p incorporated a piecewise constant θ(t), i.e., θ(t) = θ1 if
t < 5, θ(t) = θ2 if 5 ≤ t < 10, and θ(t) = θ3 if t ≥ 10. λ(s) =
λ was assumed to be constant.

The estimates were λ̂ = 0.026, θ̂1 = 0.019, θ̂2 = 0.078, and
θ̂3 = 0. The parameters of the normal mixtures were µ̂0 =
−0.348, σ̂0 = 0.095, µ̂1 = 0.164, and σ̂1 = 0.490. The estimates
for the parameters of the mixing densities were close to those
for Model I. The log likelihood was −333.970. The value of
the likelihood ratio test was 12.67 on two degrees of free-
dom, which confirmed the results in the previous section that
allowing for heterogeneity in risk of transfusion by ages of
transfusion significantly improved the model fit.

For both models the parameter estimates of the mixing
probabilities were very close to the estimates based on the
fixed cut-off point definition of “infected.” The interpreta-
tion is slightly different, however, as the mixing probabilities
model the latent true infection status, and models (5) and (6)
model the event that the assay optical density reading exceeds
a certain threshold. The good agreement of the estimates in-
dicates that the chosen cut-offs adequately capture the latent
infection state.

4.4 Goodness-of-Fit
To test the goodness-of-fit of Models Ia and IIa (assum-
ing known infection status), and the mixture models, we
compared the observed numbers of infected children with
predicted numbers of infection based on the respective
model. The “indeterminate” children were excluded from the
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Table 3
Observed and expected number of infected children for the

models presented in Tables 1 and 2

Age in years
No. of
transfusions Model <5 5−10 ≥10

0 Observed 7/90 15/85 19/63
Model Ia 7.39 16.46 19.38
Model IIa 6.99 15.60 18.44
Mixture model I 7.39 16.46 19.38
Mixture model II 6.99 15.60 18.44

1–2 Observed 4/57 12/69 21/63
Model Ia 6.55 14.10 20.27
Model IIa 5.73 15.50 17.48
Mixture model I 6.83 15.45 21.98
Mixture model II 5.73 15.50 17.48

≥3 Observed 8/34 18/47 11/36
Model Ia 6.21 12.85 12.36
Model IIa 4.70 14.97 13.41
Mixture model I 6.63 14.78 14.49
Mixture model II 4.70 14.97 13.41

analysis to make the models comparable. The first line in each
cell of Table 3 shows the observed number of infected subjects
in that cell out of the total number of subjects in that cell, the
numbers in the lines below are the expected counts of infected
individuals based on the respective models. For brevity we do
not present the predicted values for Models Ib and IIb, as
they were virtually identical to the ones of the corresponding
fixed-effects models.

We used as the goodness-of-fit criterion Vk =
∑

(Yi −np̂i)
2/

np̂i where Yi is the observed number of infected children in the
ith cell, n is the sample size, and p̂ is the proportion estimated
to be infected under the respective model. The degrees of
freedom of the test statistic, k, is defined as the number of
nonempty cells minus the number of parameters in the model.

For all models the fit was adequate, although all models
underestimated the risk of infection in the 5–10 years age
and ≥3 transfusion group. Model IIa and mixture Model II
yielded identical estimates of the expected number of infec-
tions, which is not surprising as the parameter estimates for
the mixing probability were very close for the two models.
Model Ia and mixture Model I also resulted in close estimates
of the predicted numbers, but the values based on the mix-
ture model were slightly higher in the transfused population.
This may reflect the fact that a single parameter does not
capture the risk of infection associated with transfusion fully,
and the mixture model is slightly more flexible to compen-
sate for that. The values of the test statistic and the associ-
ated p-values (given in parentheses) were V 7 = 0.39(0.99) for
Model Ia, V 5 = 0.47(0.99) for Model IIa, V 3 = 0.38(0.94) for
mixture Model I, and V 1 = 0.59(0.44) for mixture Model II.

5. Discussion
We present a parametric two-state model to estimate the risk
of blood-borne transmission of HHV-8 in a cross-sectional
sample of children with sickle cell anemia from Uganda. In-
fection can occur in two different ways, either through blood
transfusions at known ages, or through other exposures, col-
lectively referred to as “background infection.” By modeling
the hazard of infection using a continuous component, cor-

responding to the background infection rate, and a discrete
component at the ages at which transfusions were received,
we incorporate the ages of transfusions and thus fully uti-
lize the available data. We compare the model with a sim-
pler model, that assumes a constant hazard associated with
transfusion and can be related to relative risk estimates in
a log-linear model. We sought to determine whether the risk
associated with transfusion varied among children by incorpo-
rating a child-specific random effect into the transfusion risk
component. This model might detect differences in transfu-
sion risk due to variability in the general levels of immunity
in children (which can be modulated by nutritional status,
frequency of malaria, or the burden of intestinal parasites),
or to variability in the level of circulating virus among blood
donors. One has to be careful though, not to overinterpret
results on the estimation of the random-effects parameters,
as they strongly depend on the model that was chosen for λ.
An alternative approach to using a random effect would be to
model the background hazard rate nonparametrically, which
would cause any heterogeneity among children to be absorbed
into the background rate. In an extension, we model the as-
say measurements using a mixing distribution to avoid using
predefined cut-off points for the definition of “infected” in the
absence of a gold standard.

The model relies on the assumption that infection as de-
tected by antibodies does not clear. A previous study in ho-
mosexual men showed that K8.1 antibody results, once pos-
itive, generally remain positive over a period of a decade or
more (Biggar et al., 2003). In very young children (less than
1 year of age), HHV-8 antibodies transferred from mothers
may clear. However, our study included only one child less
than 1 year of age.

Another potential source of bias that would lead to an un-
derestimate of the background infection rate are differences
in mortality among uninfected and HHV-8-infected children.
While this problem arises in studies of HIV, no differences
in mortality by HHV-8 infection status in children have been
found (Brayfield et al., 2003).

We fit several parameterizations of the models to data on
HHV-8 infection in a cross-sectional sample of children in
Uganda. For all models, the overall risk of infection through
transfusion was estimated to be around 3% per unit of blood
transfused and was found to be statistically significantly dif-
ferent from zero. In our data, we did not detect significant
heterogeneity among children in this risk as modeled by the
random effect. On the other hand, we did detect heterogeneity
in transfusion risk according to the ages at which the transfu-
sions occurred, with lower risk seen in children below 5 years
or at least 10 years of age, compared to 5- to 9-year-old chil-
dren. Notably, the volume of each blood transfusion is calcu-
lated directly from the weight of the child. Also, HHV-8 circu-
lates at extremely low levels in infected individuals. Younger
children receive smaller volumes of blood than older children,
and they may have lower transfusion risk because they are
more likely to receive transfusions with small amounts (or
even an absence) of virus. For the oldest children, the infec-
tion risk might decrease with maturation of the immune sys-
tem during childhood. These hypothesized explanations need
to be examined in additional studies.

Using a mixture model for the assay optical density read-
ings yielded very similar results for risk associated with
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transfusion. The fit for all models was significantly im-
proved when transfusion risk was allowed to vary by age of
transfusion.

Additional covariates could be incorporated into the model
by using a Cox proportional hazards model for the back-
ground infection rate, for example. If we assume a constant
risk of transfusion, we note that the resulting estimate will
be close to the relative risk estimate in a log-linear model
that treats the number of transfusions as a continuous vari-
able. Since HHV-8 infection among the children in our study
is not a rare event, the relative risk will be different from
an odds ratio estimate that is obtained by using the number
of transfusions as a continuous variable in a logistic regres-
sion model. In the logistic model, the parameter estimates
the log odds ratio associated with one additional transfusion.
Dunson and Baird (2001) proposed a proportional odds model
that estimates the cumulative odds ratio associated with one
additional transfusion. Neither of these parameters have the
interpretation of the increase in absolute risk associated with
transfusion which our method provides.

The study we presented in this article serves as the basis of
a larger, longitudinal study that will investigate factors that
influence transmission and infection of HHV-8 in Ugandan
children.
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Résumé

Dans les études transversales de maladies infectieuses, les
données consistent typiquement en : l’âge au moment de
l’étude, le statut de l’infection (présence ou absence) et une
chronologie d’événements pouvant être associés à la maladie.
Motivés par une étude sur la transmission de l’herpes virus hu-
main 8 (HHV-8) parmi les enfants ayant une drépanocytose en
Ouganda, nous avons développé une approche paramétrique
flexible pour combiner les données du statut et l’histoire des
transfusions sanguines. Nous modélisons l’hétérogénéité du
risque associé à la transfusion par un effet aléatoire spécifique
à l’enfant. Nous présentons une extension du modèle pour
s’accommoder du fait qu’il n’existe pas une référence standard
pour l’infection HHV-8 et que le statut de l’infection a été
mesuré par un test sérologique. Les paramètres sont estimés
par le maximum de vraisemblance. Enfin, nous présentons les
résultats de diverses paramétrisations du modèle appliquées
à l’étude Ougandaise.
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